e³ man. Multi -agent of the institutional agents. A model for fair and effective negotiation.
Latest Job Opportunities in India
Discover top job listings and career opportunities across India. Stay updated with the latest openings in IT, government, and more.
Check Out Jobs!Read More
🔥 e³ man. Multi -agent of the institutional agents. A model for fair and effective negotiation.
revealed
Reference
Abdelnabi, S., Gomaa, A., Sivaprasad, S., Schönherr, L., & Fritz, M. (2023). Cooperation, competition and loss: interactive negotiations. Arxiv. https://doi.org/10.48550/arxiv.2309.17234
Albino, V., Carbonara, N., & GANNOCCARO, I. (2003). Coordination mechanisms based on cooperation and competition within industrial areas: an arithmetic approach to the agent. Artificial Communities Magazine and Social Simulation, 6 (4). Recupirado de https://www.jsss.org/6/4/3.html
Arnejo, Z., Gaudou, B., Saqalli, M., & Bantayan, N. (2025). The models based on the agent continue for the stakeholders: the domain review. Artificial Communities Magazine and Social Simulation, 28 (2). https://www.jsss.org/28/2/2.html
AyDoğan, R., Baarslag, T., Florijn, TCP, Fujita, K., Jonker, CM, & Mohammad, Y. (2025). Automatic negotiation agents (ANAC) 2024: Challenges and results. en Aamas 2025. IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2025/PDFS/P3000.PDF
Barreteau, O., Bousquet, F., & Attonaty, J.-M. (2001). Roles toys to open the black box of multi -agent systems: the method and lessons applied to the Single River feathers systems. Artificial Communities Magazine and Social Simulation, 4 (2). Recupirado de https://www.jsss.org/4/2/5.html
Barreteau, O., Le Page, C., & D’Aquino, P. (2003). Playing games, models and negotiations games: Part One Journal of Artificial Communities and Social Simulation, 6 (2). Recupirado de https://jsss.org/6/2/contents.html
Barreteau, O., et al. (2003). Classification of the common uses of RPG and models (post -natural science). Artificial Communities Magazine and Social Simulation, 6 (2). (Nota: contenido citado en editorial). Recupirado de https://www.jssss.org/6/2/10.html
Betz, G. (2022). Multi -ventilation simulation in the natural language of dialectical opinion dynamics. Journal of Artificial Societies and Social Simulation, 25 (1), Article 2. https://doi.org/10.18564/jasss.4725
Bianchi ، F. ، Chia ، PJ ، Yüksekgönül ، M. ، Tagliabue ، J. ، Jurafsky ، D. ، & Zou ، J. (2024). To what extent can LLMS negotiate? The negotiating and analysis platform. Arxiv. https://doi.org/10.48550/arxiv.2402.05863
Biré, L., Phung, QN, Taillandier, P., Phung, Da, Nguyen, ND, & DROGOUL, A. (2025). Rác: A dangerous simulation game on the agent to pay a discussion about waste management in Vietnamese irrigation systems. Artificial Communities Magazine and Social Simulation, 28 (2). https://doi.org/10.18564/jasss.5617
Bordi, R., et al. (2004). MAS-SOC: A multi-agent social simulation platform. Artificial Communities Magazine and Social Simulation, 8 (3). Recupirado de https://www.jssss.org/8/3/7.html
Chang, S., & Fujita, K. (2023). Bayesian Learning model for multi -issue automatic negotiation. en Aamas 2023 (pp. 2487-2489). IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2023/PDFS/P2487.PDF
Choi, M., & Yang, J.-S. (2024). Explore the complications of negotiation: strategies for a successful negotiation within the team in organizations. Journal of Artificial Communities and Social Simulation, 27 (3). https://www.jssss.org/27/3/4.html
Daré, W., & Barretau, O. (2003). The roles game in negotiating the irrigated system: between playing and reality. Artificial Communities Magazine and Social Simulation, 6 (3). Recupirado de https://www.jsss.org/6/3/6.html
Delos Reyes, R., Lyons Keenan, H., & Zachreson, C. (2025). Microsimulation Motivation to change behavior calibration of reverse learning data. Journal of Artificial Societies and Social Simulation, 28 (1). https://www.jsss.org/28/1/contents.html
D’Aquino, P., Le Page, C., & Bousquet, F. (2003). Using self -designed roles toys and a multi -agent system to enable local decisions to manage land use: experience self -storms in Senegal. Artificial Communities Magazine and Social Simulation, 6 (3). Recupirado de https://jsss.soc.surrey.ac.uk/6/3/5.html
Feng, Y., & LI, S. (2024). Note about the approximation of social nash is likely with additional assessments. En icalp 2024. Schloss Dagstuhl. https://doi.org/10.4230/lipics.icalp.2024.63
Florijn, TCP (2024). Negotiation strategies to combine partial deals in individual negotiations. Enas Aamas 2024 (pp. 2734-2736). IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2024/pdfs/P2734.pdf
Gao, K., et al. (2024). High -frequency financial market simulation and flash disruption scenarios: the modeling approach to the agent. Artificial Societies Magazine and Social Simulation, 27. https://doi.org/10.18564/jsss.5403
Garg, J., Husić, E., LI, W., Végh, La, & Vondrák, J. (2023). Social social approximation by matching and local research. En Stoc 2023 (pp. 1298-1310). ACM. https://doi.org/10.1145/3564246.3585255
Guyot, P., & Honiden, S. (2006). Participated Partners Simulation: Merging multi -agent systems and role -playing games. Artificial Communities Magazine and Social Simulation, 9 (4). Recupirado de http://jsss.soc.surrey.ac.uk/9/4/8.html
Khatami, S., & Frantz, CK (2025). From concepts to the form: automation to extract features for the agent -based models using large language models. Journal of Artificial Societies and Social Simulation, 28 (3). https://www.jssss.org/28/3/contents.html
Koça, T., De Jonge, D., & Baarslag, T. (2024). The algorithms search for automatic negotiation in large fields. Mathematics and artificial intelligence, 92 (7), 903-924. https://doi.org/10.1007/S10472-023-09859-
Kwon, D., Weiss, E., Kulshrestha, T., Chawla, K., Lucas, G., & Gratch, J. (2024). Are the effective negotiators for LLMS? The systematic evaluation of the large language models in strategic interactions. Results EMNLP 2024 (pp. 5391-5413). ACL. https://doi.org/10.18653/V1/2024.findings-emnp.310
Lorig, F., & Noring, E. (EDS.). (2023). Multiple simulation based on the twenty -third situation: International Labor Workshop 23, Mabs 2022 (Lecture notes in Computer Science, Volume 13743). Springer. https://doi.org/10.1007/978-3-031-22947-3
Mali, J., Rey, S., Endriss, U., & LOTNER, M. (2023). Equity in the participatory budget by equal resource. Enas Aamas 2023 (pp. 2031-2039). IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2023/PDFS/P2031.pdf
Ni, S., Feng, C., & Gou, H. (2023). Nash-Parking Justice relates to payment and withdrawal chains. Mathematics, 11 (23), 4719. https://doi.org/10.3390/math11234719
Rachmilevitch, S. (2024). The solution of Nash Al -Mas and Al -Nafeh Al -Naida. Economy messages, 235, 111958. https://doi.org/10.1016/j.ECONLET.2024.111958
Recent developments in the negotiating agent: applications and competition challenges. (2023). In studies in arithmetic intelligence (Volume 1092). Springer. https://doi.org/10.1007/978-981-99-0561-4
Rent, BM, Hoos, HH, & Jonker, CM (2022). Automated composition and the use of strategy portfolios for bargaining. Arxiv. https://doi.org/10.48550/arxiv.2212.10228
RodríGuez-Arias, A., Sánchez-MAROTO, N., & Guijarro-Perdinas, B. (2025). Communication and negotiation to improve the models based on the agent. In the facts of the seventeenth international conference of agents and artificial intelligence. Scitepress. https://www.scitepress.org/papers/2025/133775/133775.pdf
Stearn, A., Kraus, S., & Sarne, D. (2022). The strategy of negotiating the hybrid hybrid function in the multilateral negotiation. Arxiv. https://doi.org/10.48550/arxiv.2201.04126
Hashtags: #e³ #man #Multi #agent #institutional #agents #model #fair #effective #negotiation
📰 Published by jbustelo on 2025-09-01 14:29:00
Source Feed: CoMSES jobs, events and codebase releases