Latest Job Opportunities in India
Discover top job listings and career opportunities across India. Stay updated with the latest openings in IT, government, and more.
Check Out Jobs!Read More
🔥 e³ man. Multi -agent of the institutional agents. A model for fair and effective negotiation.
revealed
Reference
Abdelnabi, S., Gomaa, A., Sivaprasad, S., Schönherr, L., & Fritz, M. (2023). Cooperation, competition and loss: interactive negotiations. Arxiv. https://doi.org/10.48550/arxiv.2309.17234
Albino, V., Carbonara, N., & GANNOCCARO, I. (2003). Coordination mechanisms based on cooperation and competition within industrial areas: an arithmetic approach to the agent. Artificial Communities Magazine and Social Simulation, 6 (4). Recupirado de https://www.jsss.org/6/4/3.html
Arnejo, Z., Gaudou, B., Saqalli, M., & Bantayan, N. (2025). The models based on the agent continue for the stakeholders: the domain review. Artificial Communities Magazine and Social Simulation, 28 (2). https://www.jsss.org/28/2/2.html
AyDoğan, R., Baarslag, T., Florijn, TCP, Fujita, K., Jonker, CM, & Mohammad, Y. (2025). Automatic negotiation agents (ANAC) 2024: Challenges and results. en Aamas 2025. IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2025/PDFS/P3000.PDF
Barreteau, O., Bousquet, F., & Attonaty, J.-M. (2001). Roles toys to open the black box of multi -agent systems: the method and lessons applied to the Single River feathers systems. Artificial Communities Magazine and Social Simulation, 4 (2). Recupirado de https://www.jsss.org/4/2/5.html
Barreteau, O., Le Page, C., & D’Aquino, P. (2003). Playing games, models and negotiations games: Part One Journal of Artificial Communities and Social Simulation, 6 (2). Recupirado de https://jsss.org/6/2/contents.html
Barreteau, O., et al. (2003). Classification of the common uses of RPG and models (post -natural science). Artificial Communities Magazine and Social Simulation, 6 (2). (Nota: contenido citado en editorial). Recupirado de https://www.jssss.org/6/2/10.html
Betz, G. (2022). Multi -ventilation simulation in the natural language of dialectical opinion dynamics. Journal of Artificial Societies and Social Simulation, 25 (1), Article 2. https://doi.org/10.18564/jasss.4725
Bianchi ، F. ، Chia ، PJ ، Yüksekgönül ، M. ، Tagliabue ، J. ، Jurafsky ، D. ، & Zou ، J. (2024). To what extent can LLMS negotiate? The negotiating and analysis platform. Arxiv. https://doi.org/10.48550/arxiv.2402.05863
Biré, L., Phung, QN, Taillandier, P., Phung, Da, Nguyen, ND, & DROGOUL, A. (2025). Rác: A dangerous simulation game on the agent to pay a discussion about waste management in Vietnamese irrigation systems. Artificial Communities Magazine and Social Simulation, 28 (2). https://doi.org/10.18564/jasss.5617
Bordi, R., et al. (2004). MAS-SOC: A multi-agent social simulation platform. Artificial Communities Magazine and Social Simulation, 8 (3). Recupirado de https://www.jssss.org/8/3/7.html
Chang, S., & Fujita, K. (2023). Bayesian Learning model for multi -issue automatic negotiation. en Aamas 2023 (pp. 2487-2489). IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2023/PDFS/P2487.PDF
Choi, M., & Yang, J.-S. (2024). Explore the complications of negotiation: strategies for a successful negotiation within the team in organizations. Journal of Artificial Communities and Social Simulation, 27 (3). https://www.jssss.org/27/3/4.html
Daré, W., & Barretau, O. (2003). The roles game in negotiating the irrigated system: between playing and reality. Artificial Communities Magazine and Social Simulation, 6 (3). Recupirado de https://www.jsss.org/6/3/6.html
Delos Reyes, R., Lyons Keenan, H., & Zachreson, C. (2025). Microsimulation Motivation to change behavior calibration of reverse learning data. Journal of Artificial Societies and Social Simulation, 28 (1). https://www.jsss.org/28/1/contents.html
D’Aquino, P., Le Page, C., & Bousquet, F. (2003). Using self -designed roles toys and a multi -agent system to enable local decisions to manage land use: experience self -storms in Senegal. Artificial Communities Magazine and Social Simulation, 6 (3). Recupirado de https://jsss.soc.surrey.ac.uk/6/3/5.html
Feng, Y., & LI, S. (2024). Note about the approximation of social nash is likely with additional assessments. En icalp 2024. Schloss Dagstuhl. https://doi.org/10.4230/lipics.icalp.2024.63
Florijn, TCP (2024). Negotiation strategies to combine partial deals in individual negotiations. Enas Aamas 2024 (pp. 2734-2736). IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2024/pdfs/P2734.pdf
Gao, K., et al. (2024). High -frequency financial market simulation and flash disruption scenarios: the modeling approach to the agent. Artificial Societies Magazine and Social Simulation, 27. https://doi.org/10.18564/jsss.5403
Garg, J., Husić, E., LI, W., Végh, La, & Vondrák, J. (2023). Social social approximation by matching and local research. En Stoc 2023 (pp. 1298-1310). ACM. https://doi.org/10.1145/3564246.3585255
Guyot, P., & Honiden, S. (2006). Participated Partners Simulation: Merging multi -agent systems and role -playing games. Artificial Communities Magazine and Social Simulation, 9 (4). Recupirado de http://jsss.soc.surrey.ac.uk/9/4/8.html
Khatami, S., & Frantz, CK (2025). From concepts to the form: automation to extract features for the agent -based models using large language models. Journal of Artificial Societies and Social Simulation, 28 (3). https://www.jssss.org/28/3/contents.html
Koça, T., De Jonge, D., & Baarslag, T. (2024). The algorithms search for automatic negotiation in large fields. Mathematics and artificial intelligence, 92 (7), 903-924. https://doi.org/10.1007/S10472-023-09859-
Kwon, D., Weiss, E., Kulshrestha, T., Chawla, K., Lucas, G., & Gratch, J. (2024). Are the effective negotiators for LLMS? The systematic evaluation of the large language models in strategic interactions. Results EMNLP 2024 (pp. 5391-5413). ACL. https://doi.org/10.18653/V1/2024.findings-emnp.310
Lorig, F., & Noring, E. (EDS.). (2023). Multiple simulation based on the twenty -third situation: International Labor Workshop 23, Mabs 2022 (Lecture notes in Computer Science, Volume 13743). Springer. https://doi.org/10.1007/978-3-031-22947-3
Mali, J., Rey, S., Endriss, U., & LOTNER, M. (2023). Equity in the participatory budget by equal resource. Enas Aamas 2023 (pp. 2031-2039). IFAAMAS. https://www.ifaaamas.org/procecEEDITIS/AAMAS2023/PDFS/P2031.pdf
Ni, S., Feng, C., & Gou, H. (2023). Nash-Parking Justice relates to payment and withdrawal chains. Mathematics, 11 (23), 4719. https://doi.org/10.3390/math11234719
Rachmilevitch, S. (2024). The solution of Nash Al -Mas and Al -Nafeh Al -Naida. Economy messages, 235, 111958. https://doi.org/10.1016/j.ECONLET.2024.111958
Recent developments in the negotiating agent: applications and competition challenges. (2023). In studies in arithmetic intelligence (Volume 1092). Springer. https://doi.org/10.1007/978-981-99-0561-4
Rent, BM, Hoos, HH, & Jonker, CM (2022). Automated composition and the use of strategy portfolios for bargaining. Arxiv. https://doi.org/10.48550/arxiv.2212.10228
RodríGuez-Arias, A., Sánchez-MAROTO, N., & Guijarro-Perdinas, B. (2025). Communication and negotiation to improve the models based on the agent. In the facts of the seventeenth international conference of agents and artificial intelligence. Scitepress. https://www.scitepress.org/papers/2025/133775/133775.pdf
Stearn, A., Kraus, S., & Sarne, D. (2022). The strategy of negotiating the hybrid hybrid function in the multilateral negotiation. Arxiv. https://doi.org/10.48550/arxiv.2201.04126
Hashtags: #e³ #man #Multi #agent #institutional #agents #model #fair #effective #negotiation
📰 Published by jbustelo on 2025-09-01 14:29:00
Source Feed: CoMSES jobs, events and codebase releases



